{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# SessionNode\n", "The SessionNode class in Geomapi represents the data and metadata captured within a single epoch. The data itself can consist of various remote sensing inputs (point clouds, meshes, etc.) and mostly builds upon OPEN3D. The metadata of the SessionNode consists of the overarching properties and builds upon the RDFlib framework:\n", "\n", "[http://www.open3d.org/docs/latest/tutorial/Basic/mesh.html#](http://www.open3d.org/docs/latest/tutorial/Basic/mesh.html#) \n", "\n", "[https://rdflib.readthedocs.io/](https://rdflib.readthedocs.io/)\n", "\n", "The code below shows how to create a SessionNode from various inputs. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First the geomapi and external packages are imported" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "#IMPORT PACKAGES\n", "from rdflib import Graph, URIRef, Literal, RDF\n", "import open3d as o3d\n", "import os\n", "from pathlib import Path\n", "import ifcopenshell\n", "import numpy as np\n", "import ifcopenshell.util.selector \n", "\n", "#IMPORT MODULES\n", "from context import geomapi \n", "from geomapi.nodes import *\n", "import geomapi.utils as ut\n", "from geomapi.utils import geometryutils as gmu\n", "import geomapi.tools as tl" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n" ] } ], "source": [ "%load_ext autoreload" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "%autoreload 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode from properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A placeholder SessionNode can be initialised without any data or metadata" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [],\n", " '_linkedSubjects': [],\n", " '_subject': rdflib.term.URIRef('file:///myNode'),\n", " '_graph': None,\n", " '_graphPath': None,\n", " '_path': None,\n", " '_name': 'myName',\n", " '_cartesianBounds': None,\n", " '_orientedBounds': None,\n", " '_orientedBoundingBox': None,\n", " '_timestamp': None,\n", " '_resource': None,\n", " '_cartesianTransform': None}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node=SessionNode(subject='myNode',\n", " name='myName')\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add linkedNodes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once a Sessionnode is established, any Node can be added to it that is part of the epoch. The instance variables linkedNodes and linkedSubjects (which is automatically updated) are used for this purpose." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "filePath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','MESH','week22.obj')\n", "resourceNode1=MeshNode(path=filePath,getResource=True)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///week22')],\n", " '_subject': rdflib.term.URIRef('file:///myNode'),\n", " '_graph': None,\n", " '_graphPath': None,\n", " '_path': None,\n", " '_name': 'myName',\n", " '_cartesianBounds': None,\n", " '_orientedBounds': None,\n", " '_orientedBoundingBox': None,\n", " '_timestamp': None,\n", " '_resource': None,\n", " '_cartesianTransform': None}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node.add_linked_nodes(resourceNode1)\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute metadata\n", "If a set of nodes is present in a session, one can compute the overarching metadata. First, add a second node." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "filePath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','PCD','academiestraat week 22 a 20.pcd')\n", "resourceNode2=PointCloudNode(path=filePath,getResource=True)\n", "node.add_linked_nodes(resourceNode2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [,\n", " ],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///week22'),\n", " rdflib.term.URIRef('file:///academiestraat_week_22_a_20')],\n", " '_subject': rdflib.term.URIRef('file:///myNode'),\n", " '_graph': None,\n", " '_graphPath': None,\n", " '_path': None,\n", " '_name': 'myName',\n", " '_cartesianBounds': array([-52.61117755, 122.50257926, 12.05279306, 165.88417048,\n", " -2.84643678, 24.03564393]),\n", " '_orientedBounds': array([[-23.32604321, 166.79579552, 25.50980916],\n", " [123.61436625, 128.38233267, 26.79035759],\n", " [-54.06530499, 49.13654472, 23.27674533],\n", " [-22.97196977, 167.22821067, -2.1479756 ],\n", " [ 93.22917791, 11.15549702, -3.10049101],\n", " [-53.71123155, 49.56895987, -4.38103943],\n", " [123.96843969, 128.81474782, -0.86742718],\n", " [ 92.87510447, 10.72308187, 24.55729376]]),\n", " '_orientedBoundingBox': OrientedBoundingBox: center: (34.9516, 88.9756, 11.2047), extent: 151.884, 121.629, 27.6634),\n", " '_timestamp': '2022-08-02T08:25:01',\n", " '_resource': TriangleMesh with 12 points and 20 triangles.,\n", " '_cartesianTransform': array([[ 1. , 0. , 0. , 20.57065419],\n", " [ 0. , 1. , 0. , 88.47905237],\n", " [ 0. , 0. , 1. , 8.41263647],\n", " [ 0. , 0. , 0. , 1. ]])}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node.get_metadata_from_linked_nodes()\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**NOTE**: the session's geometric metadata i.e. cartesianBounds, orientedBounds, cartesianTransform and orientedBounding box encompas the entire session. As such, these properties represent the average and the extremes of the nodes in the session. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![rendering](../../pics/session2.PNG)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode from Nodes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SessionNodes can also be directly initialised from a set of nodes." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "meshNode=MeshNode(path=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','Mesh','Basic Wall_211_WA_Ff1_Glued brickwork sandlime 150mm_1095339.obj'),getResource=True)\n", "imgNode=ImageNode(xmpPath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','IMG','IMG_2174.xmp'),getResource=True)\n", "pcdNode=PointCloudNode(path=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','PCD','week22 photogrammetry - Cloud.pcd'),getResource=True)\n", "bimNode=BIMNode(ifcPath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','IFC','Academiestraat_parking.ifc'),getResource=True)\n", "nodeList=[meshNode,imgNode,pcdNode,bimNode] " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [,\n", " ,\n", " ,\n", " ],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'),\n", " rdflib.term.URIRef('file:///IMG_2174'),\n", " rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud'),\n", " rdflib.term.URIRef('file:///Circular_Mullion_Grouting_pile_680mm_1072728_3M75Mhp4L2Aei641BocJ1v')],\n", " '_subject': rdflib.term.URIRef('file:///b46569bd-1ef7-11ed-9c4a-c8f75043ce59'),\n", " '_graph': None,\n", " '_graphPath': None,\n", " '_path': None,\n", " '_name': None,\n", " '_cartesianBounds': array([-52.61117792, 122.50256846, 9.21354145, 165.88415522,\n", " -0.7098256 , 24.0356459 ]),\n", " '_orientedBounds': array([[-9.66526260e+00, 1.86468386e+02, 3.02287259e+01],\n", " [ 1.39268037e+02, 1.15739611e+02, 2.71940092e+01],\n", " [-7.84479065e+01, 4.18226980e+01, 2.58085749e+01],\n", " [-9.81006206e+00, 1.87462216e+02, -4.02857866e-02],\n", " [ 7.03405939e+01, -2.79122459e+01, -7.49515344e+00],\n", " [-7.85927059e+01, 4.28165285e+01, -4.46043679e+00],\n", " [ 1.39123238e+02, 1.16733442e+02, -3.07500244e+00],\n", " [ 7.04853934e+01, -2.89060764e+01, 2.27738582e+01]]),\n", " '_orientedBoundingBox': OrientedBoundingBox: center: (30.3377, 79.2781, 11.3668), extent: 164.903, 160.228, 30.2857),\n", " '_timestamp': '2022-08-02T08:25:01',\n", " '_resource': TriangleMesh with 12 points and 20 triangles.,\n", " '_cartesianTransform': array([[ 1. , 0. , 0. , 37.79468033],\n", " [ 0. , 1. , 0. , 71.92163471],\n", " [ 0. , 0. , 1. , 8.91496436],\n", " [ 0. , 0. , 0. , 1. ]])}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node=SessionNode(linkedNodes=nodeList)\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**NOTE**: GetMetadata (bool) by default is True. As such, when data is imported, the cartesianBounds, orientedBounds, cartesianTransform and orientedBoundingBox is automatically extracted." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode from resources" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A similar result is achieved by initialising a SessionNode from a set of geometries. In this case, GetResource (bool) means nothing. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [,\n", " ,\n", " ,\n", " ],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///b48b8164-1ef7-11ed-9a09-c8f75043ce59'),\n", " rdflib.term.URIRef('file:///b48b8165-1ef7-11ed-b91e-c8f75043ce59'),\n", " rdflib.term.URIRef('file:///b48b8166-1ef7-11ed-a400-c8f75043ce59'),\n", " rdflib.term.URIRef('file:///b49ca47b-1ef7-11ed-a13f-c8f75043ce59')],\n", " '_subject': rdflib.term.URIRef('file:///b48b8163-1ef7-11ed-884c-c8f75043ce59'),\n", " '_graph': None,\n", " '_graphPath': None,\n", " '_path': None,\n", " '_name': None,\n", " '_cartesianBounds': array([-52.61117792, 122.50256846, 12.05279275, 165.88415522,\n", " -0.7098256 , 24.0356459 ]),\n", " '_orientedBounds': array([[ -2.80881716, 195.04328414, 30.48888509],\n", " [146.03830992, 110.2994234 , 26.99612434],\n", " [-76.00408274, 66.6405539 , 26.60602343],\n", " [ -2.9516538 , 196.04025482, 0.21255762],\n", " [ 72.7002077 , -17.10633616, -7.16306479],\n", " [-76.14691938, 67.63752458, -3.67030404],\n", " [145.89547327, 111.29639407, -3.28020313],\n", " [ 72.84304434, -18.10330684, 23.11326268]]),\n", " '_orientedBoundingBox': OrientedBoundingBox: center: (34.9457, 88.9685, 11.6629), extent: 171.316, 147.851, 30.2931),\n", " '_timestamp': '2022-08-18T15:14:35',\n", " '_resource': TriangleMesh with 11 points and 18 triangles.,\n", " '_cartesianTransform': array([[ 1. , 0. , 0. , 39.72931617],\n", " [ 0. , 1. , 0. , 74.53447192],\n", " [ 0. , 0. , 1. , 9.01263668],\n", " [ 0. , 0. , 0. , 1. ]])}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "resources=[meshNode.resource,imgNode.resource,pcdNode.resource,bimNode.resource]\n", "node=SessionNode(linkedResources=resources)\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**NOTE**: The cartesianTransform extracted from paths or resources are void of rotationmatrices as this metadata is not part of the fileformat. The translation thus represents the center of the geometry." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode from Graph and graphPath" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If a session was already serialized, a SessionNode can be initialised from the graph or graphPath. \n", "\n", "**NOTE**: The graphPath is the more complete option as it is used to absolutize the node's path information. However, it is also the slower option as the entire graph encapsulation the node is parsed multiple times.\n", "\n", "**USE**: linkeddatatools.graph_to_nodes resolves this issue.\n", "\n", "It is important to notice that a SessionNode can be initiliased from **3 types of Graphs**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### SessionGraph\n", "The sessionGraph is the nodes own metadata and is considered the one true graph that should occupy the sessionnode.graph variable" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "@prefix e57: .\n", "@prefix openlabel: .\n", "@prefix v4d: .\n", "\n", " a v4d:SessionNode ;\n", " e57:cartesianBounds \"\"\"[-52.61117792 122.50256846 9.21354145 165.88415522 -0.7098256\n", " 24.0356459 ]\"\"\" ;\n", " e57:cartesianTransform \"\"\"[[ 1. 0. 0. 30.86556763]\n", " [ 0. 1. 0. 93.16462374]\n", " [ 0. 0. 1. 10.82216436]\n", " [ 0. 0. 0. 1. ]]\"\"\" ;\n", " v4d:linkedSubjects \"['file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339', 'file:///IMG_2174', 'file:///week22_photogrammetry_-_Cloud', 'file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d']\" ;\n", " v4d:name \"17dc31bc-17f2-11ed-bdae-c8f75043ce59\" ;\n", " v4d:orientedBounds \"\"\"[[-3.63772704e+01 1.68281221e+02 2.37857820e+01]\n", " [ 1.25493633e+02 1.45094167e+02 2.49074918e+01]\n", " [-5.81517614e+01 1.62450831e+01 2.32386533e+01]\n", " [-3.61957602e+01 1.68344760e+02 -1.09404387e+00]\n", " [ 1.03900652e+02 -6.87843298e+00 -5.19462782e-01]\n", " [-5.79702512e+01 1.63086218e+01 -1.64117262e+00]\n", " [ 1.25675143e+02 1.45157705e+02 2.76659619e-02]\n", " [ 1.03719142e+02 -6.94197166e+00 2.43603631e+01]]\"\"\" ;\n", " v4d:path \"SESSION\\\\17dc31bc-17f2-11ed-bdae-c8f75043ce59.ply\" ;\n", " openlabel:timestamp \"2022-08-02T08:25:01\" .\n", "\n", "\n" ] } ], "source": [ "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','sessionGraph.ttl')\n", "graph=Graph().parse(graphPath)\n", "print(graph.serialize())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "file:///17dc31bc-17f2-11ed-bdae-c8f75043ce59\n" ] } ], "source": [ "node=SessionNode(graphPath=graphPath)\n", "print(node.subject)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calling getResource on this graph will gather the convex hull of all the nodes that comprised the session." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TriangleMesh with 9 points and 14 triangles.\n" ] } ], "source": [ "node.get_resource()\n", "print(node.resource)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ResourceGraph\n", "Alternatively, a session can also be initialised from a graph that only contains resources. \n", "\n", "**NOTE**: this graph can consists of any nodetypes" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'), rdflib.term.URIRef('file:///IMG_2174'), rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud')]\n" ] } ], "source": [ "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','resourceGraph.ttl')\n", "graph=Graph().parse(graphPath)\n", "\n", "subjects=[s for s in graph.subjects(RDF.type)]\n", "print(subjects)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "no sessionSubjects found\n" ] }, { "data": { "text/plain": [ "{'_linkedNodes': [,\n", " ,\n", " ,\n", " ],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'),\n", " rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'),\n", " rdflib.term.URIRef('file:///IMG_2174'),\n", " rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud')],\n", " '_subject': rdflib.term.URIRef('file:///b56f7eaf-1ef7-11ed-8315-c8f75043ce59'),\n", " '_graph': )>,\n", " '_graphPath': 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resourceGraph.ttl',\n", " '_path': None,\n", " '_name': None,\n", " '_cartesianBounds': array([-52.61117797, 122.50256846, 9.21354145, 165.88415534,\n", " -0.70982566, 24.03564597]),\n", " '_orientedBounds': array([[-3.63772707e+01, 1.68281221e+02, 2.37857820e+01],\n", " [ 1.25493633e+02, 1.45094167e+02, 2.49074919e+01],\n", " [-5.81517614e+01, 1.62450830e+01, 2.32386533e+01],\n", " [-3.61957605e+01, 1.68344760e+02, -1.09404394e+00],\n", " [ 1.03900652e+02, -6.87843277e+00, -5.19462770e-01],\n", " [-5.79702512e+01, 1.63086216e+01, -1.64117265e+00],\n", " [ 1.25675143e+02, 1.45157706e+02, 2.76659342e-02],\n", " [ 1.03719142e+02, -6.94197144e+00, 2.43603632e+01]]),\n", " '_orientedBoundingBox': OrientedBoundingBox: center: (33.7617, 80.7014, 11.6332), extent: 163.527, 153.588, 24.8806),\n", " '_timestamp': '2022-08-02T08:25:01',\n", " '_resource': TriangleMesh with 9 points and 14 triangles.,\n", " '_cartesianTransform': array([[ 1. , 0. , 0. , 30.86556763],\n", " [ 0. , 1. , 0. , 93.16462375],\n", " [ 0. , 0. , 1. , 10.82216436],\n", " [ 0. , 0. , 0. , 1. ]])}" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node=SessionNode(graphPath=graphPath)\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Combined Graph\n", "A third option is a combined graph of sessionNode(s) and resourceNodes. \n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[{rdflib.term.URIRef('file:///17dc31bc-17f2-11ed-bdae-c8f75043ce59'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#SessionNode')},\n", " {rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#MeshNode')},\n", " {rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#BIMNode')},\n", " {rdflib.term.URIRef('file:///IMG_2174'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#ImageNode')},\n", " {rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#PointCloudNode')}]\n" ] } ], "source": [ "import pprint\n", "\n", "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','combinedGraph.ttl')\n", "graph=Graph().parse(graphPath)\n", "\n", "dict=[{s,o} for s,o in graph.subject_objects(RDF.type)]\n", "pprint.pprint(dict)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_linkedNodes': [,\n", " ,\n", " ,\n", " ],\n", " '_linkedSubjects': [rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'),\n", " rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'),\n", " rdflib.term.URIRef('file:///IMG_2174'),\n", " rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud')],\n", " '_subject': rdflib.term.URIRef('file:///17dc31bc-17f2-11ed-bdae-c8f75043ce59'),\n", " '_graph': )>,\n", " '_graphPath': 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\combinedGraph.ttl',\n", " '_path': 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\SESSION\\\\17dc31bc-17f2-11ed-bdae-c8f75043ce59.ply',\n", " '_name': '17dc31bc-17f2-11ed-bdae-c8f75043ce59',\n", " '_cartesianBounds': array([-52.61117797, 122.50256846, 9.21354145, 165.88415534,\n", " -0.70982566, 24.03564597]),\n", " '_orientedBounds': array([[-3.63772707e+01, 1.68281221e+02, 2.37857820e+01],\n", " [ 1.25493633e+02, 1.45094167e+02, 2.49074919e+01],\n", " [-5.81517614e+01, 1.62450830e+01, 2.32386533e+01],\n", " [-3.61957605e+01, 1.68344760e+02, -1.09404394e+00],\n", " [ 1.03900652e+02, -6.87843277e+00, -5.19462770e-01],\n", " [-5.79702512e+01, 1.63086216e+01, -1.64117265e+00],\n", " [ 1.25675143e+02, 1.45157706e+02, 2.76659342e-02],\n", " [ 1.03719142e+02, -6.94197144e+00, 2.43603632e+01]]),\n", " '_orientedBoundingBox': OrientedBoundingBox: center: (33.7617, 80.7014, 11.6332), extent: 163.527, 153.588, 24.8806),\n", " '_timestamp': '2022-08-02T08:25:01',\n", " '_resource': TriangleMesh with 9 points and 14 triangles.,\n", " '_cartesianTransform': array([[ 1. , 0. , 0. , 30.86556763],\n", " [ 0. , 1. , 0. , 93.16462375],\n", " [ 0. , 0. , 1. , 10.82216436],\n", " [ 0. , 0. , 0. , 1. ]]),\n", " 'type': 'https://w3id.org/v4d/core#SessionNode'}" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "node=SessionNode(graphPath=graphPath)\n", "{key:value for key, value in node.__dict__.items() if not key.startswith('__') and not callable(key)} " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode get linked Nodes\n", "\n", "It is also possible to add specific Nodes from a graph to an existing session" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[]\n" ] } ], "source": [ "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','sessionGraph.ttl')\n", "node=SessionNode(graphPath=graphPath)\n", "print(node.linkedNodes)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d')]\n" ] } ], "source": [ "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','resourceGraph.ttl')\n", "graph=Graph().parse(graphPath)\n", "subjects=[s for s in graph.subjects(RDF.type)]\n", "mysubjects=subjects[0:2]\n", "print(mysubjects)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[, ]\n" ] } ], "source": [ "node.get_linked_nodes(graph,mysubjects)\n", "print(node.linkedNodes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode get linked resources\n", "The resources of the linkedNodes can also be directly called from the sessionNodes. Obviously, this only works if the resources are stored in the directory/subdirectory of the session graphPath" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[, , , ]\n" ] } ], "source": [ "graphPath = os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','combinedGraph.ttl')\n", "node=SessionNode(graphPath=graphPath)\n", "print(node.linkedNodes)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[, , , ]\n" ] } ], "source": [ "resources=node.get_linked_resources()\n", "print([type(r) for r in resources])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode save linked resources\n", "We can also save these resources to a new directory. Default file types will be used for each nodetype." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['d:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resources\\\\17dc31bc-17f2-11ed-bdae-c8f75043ce59.ply', 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resources\\\\Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339.ply', 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resources\\\\Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d.ply', 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resources\\\\IMG_2174.png', 'd:\\\\Scan-to-BIM repository\\\\geomapi\\\\test\\\\testfiles\\\\resources\\\\week22_photogrammetry_-_Cloud.pcd']\n" ] } ], "source": [ "directory=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','resources')\n", "node.save_linked_resources(directory)\n", "print(ut.get_list_of_files(directory))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode save resource\n", "\n", "It is interesting to buffer the geometries on drive to speed up future analyses. \n", "Set save=True on node.to_graph with an optional filepath to store the geometry as .ply or .obj." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\SESSION\\17dc31bc-17f2-11ed-bdae-c8f75043ce59.ply\n" ] } ], "source": [ "node.save_resource(directory)\n", "print(node.path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode to Graph" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Graph serialisation is inherited from Node functionality." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "@prefix e57: .\n", "@prefix openlabel: .\n", "@prefix v4d: .\n", "\n", " a v4d:SessionNode ;\n", " e57:cartesianBounds \"\"\"[-52.61117797 122.50256846 9.21354145 165.88415534 -0.70982566\n", " 24.03564597]\"\"\" ;\n", " e57:cartesianTransform \"\"\"[[ 1. 0. 0. 30.86556763]\n", " [ 0. 1. 0. 93.16462375]\n", " [ 0. 0. 1. 10.82216436]\n", " [ 0. 0. 0. 1. ]]\"\"\" ;\n", " v4d:linkedSubjects \"['file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339', 'file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d', 'file:///IMG_2174', 'file:///week22_photogrammetry_-_Cloud']\" ;\n", " v4d:name \"17dc31bc-17f2-11ed-bdae-c8f75043ce59\" ;\n", " v4d:orientedBounds \"\"\"[[-3.63772707e+01 1.68281221e+02 2.37857820e+01]\n", " [ 1.25493633e+02 1.45094167e+02 2.49074919e+01]\n", " [-5.81517614e+01 1.62450830e+01 2.32386533e+01]\n", " [-3.61957605e+01 1.68344760e+02 -1.09404394e+00]\n", " [ 1.03900652e+02 -6.87843277e+00 -5.19462770e-01]\n", " [-5.79702512e+01 1.63086216e+01 -1.64117265e+00]\n", " [ 1.25675143e+02 1.45157706e+02 2.76659342e-02]\n", " [ 1.03719142e+02 -6.94197144e+00 2.43603632e+01]]\"\"\" ;\n", " v4d:path \"..\\\\..\\\\..\\\\test\\\\testfiles\\\\SESSION\\\\17dc31bc-17f2-11ed-bdae-c8f75043ce59.ply\" ;\n", " openlabel:timestamp \"2022-08-02T08:25:01\" .\n", "\n", "\n" ] } ], "source": [ "graphPath= os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','combinedGraph.ttl')\n", "\n", "node=SessionNode(graphPath=graphPath)\n", "\n", "newGraphPath = os.path.join(os.getcwd(),'myGraph.ttl')\n", "node.to_graph(newGraphPath)\n", "\n", "newNode=Node(graphPath=newGraphPath)\n", "print(node.graph.serialize())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LinkedNodes linked nodes to Graph\n", "Additionally, sessionNodes have the functionality to serialize all of their linkedNodes aswell. This effectively creates a new resourceGraph in the target directory" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'), rdflib.term.URIRef('file:///IMG_2174'), rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud')]\n" ] } ], "source": [ "node.linked_nodes_to_graph(newGraphPath,save=True)\n", "\n", "newGraph=Graph().parse(newGraphPath)\n", "subjects=[s for s in newGraph.subjects(RDF.type)]\n", "print(subjects)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LinkedNodes session to Graph\n", "Finally, a combined Graph can also be serialized consisting of both the sessionNode and each of the LinkedNodes." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[{rdflib.term.URIRef('file:///17dc31bc-17f2-11ed-bdae-c8f75043ce59'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#SessionNode')},\n", " {rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1095339'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#MeshNode')},\n", " {rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#BIMNode')},\n", " {rdflib.term.URIRef('file:///IMG_2174'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#ImageNode')},\n", " {rdflib.term.URIRef('file:///week22_photogrammetry_-_Cloud'),\n", " rdflib.term.URIRef('https://w3id.org/v4d/core#PointCloudNode')}]\n" ] } ], "source": [ "node.session_to_graph(newGraphPath,save=True)\n", "\n", "newGraph=Graph().parse(newGraphPath)\n", "dict=[{s,o} for s,o in newGraph.subject_objects(RDF.type)]\n", "pprint.pprint(dict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SessionNode Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SessionNodes are usefull for a range of analyses. Most notably, their metadata allows for fast selection of which resources are to be used in any given analysis.\n", "\n", "E.g. Image we want to asses which objects of a BIM model are potentially observed in an epochs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Consider the following resource (convex hull) of the following sessionNode:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "imgNode=ImageNode(xmpPath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','IMG','IMG_2174.xmp'),getResource=True)\n", "pcdNode=PointCloudNode(path=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','PCD','academiestraat week 22 a 20.pcd'),getResource=True)\n", "bimNode=BIMNode(ifcPath=os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','IFC','Academiestraat_parking.ifc'),getResource=True)\n", "nodeList=[imgNode,pcdNode,bimNode] " ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TriangleMesh with 12 points and 20 triangles.\n" ] } ], "source": [ "week1=SessionNode(linkedNodes=nodeList)\n", "print(week1.resource)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The already serialized ifc model and its geometry can be efficiently retrieved from the graphPath " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Open3D WARNING] Unable to load file d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\282_SC_f2_Round:Ø30:883870.obj with ASSIMP\n", "[Open3D WARNING] Unable to load file d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\B1_CL.obj with ASSIMP\n", "[Open3D WARNING] Unable to load file d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\Default Grid.obj with ASSIMP\n", "[Open3D WARNING] Unable to load file d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\Precast Stair:Stair:1194239.obj with ASSIMP\n", "[Open3D WARNING] Unable to load file d:\\Scan-to-BIM repository\\geomapi\\test\\testfiles\\Precast Stair:Stair:1195754.obj with ASSIMP\n" ] } ], "source": [ "bimGraphPath= os.path.join(Path(os.getcwd()).parents[2],'test','testfiles','bimGraph1.ttl')\n", "bimGraph=Graph().parse(bimGraphPath)\n", "bimNodes=[]\n", "for s in bimGraph.subjects(RDF.type):\n", " bimNodes.append(BIMNode(subject=s,graphPath=bimGraphPath,getResource=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "next, we can easily asses whether the BIM geometries are contained within the convex hull of the session" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100\n" ] } ], "source": [ "BIMgeometries=[n.resource for n in bimNodes]\n", "print(len(BIMgeometries))" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[False, False, False, True, True, True, None, False, False, False, False, True, False, True, False, False, False, False, True, False, False, False, False, False, True, False, True, True, None, True, True, False, True, True, False, True, True, False, False, False, False, False, True, True, False, False, False, True, True, True, True, False, False, True, True, True, True, True, True, True, False, True, True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, None, False, False, False, True, False, False, True, False, False, False, None, True, True, None, False]\n" ] } ], "source": [ "inliers=gmu.get_mesh_inliers(sources=BIMgeometries, reference=week1.resource)\n", "print(inliers)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LineSet with 30 lines." ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inside=[g for i,g in enumerate(BIMgeometries) if inliers[i]==True]\n", "outside=[g for i,g in enumerate(BIMgeometries) if inliers[i]!=True]\n", "lineset1=o3d.geometry.LineSet.create_from_triangle_mesh(week1.resource)\n", "lineset1.paint_uniform_color([1,0,0])\n", "[g.paint_uniform_color([0,1,0]) for g in inside]\n", "o3d.visualization.draw_geometries(inside + outside + [lineset1,pcdNode.resource])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![rendering](../../pics/session4.PNG)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "39\n" ] } ], "source": [ "subjects=[node.subject for i,node in enumerate(bimNodes) if inliers[i]==True]\n", "print(len(subjects))" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "@prefix omg: .\n", "@prefix v4d: .\n", "\n", " a v4d:SessionNode ;\n", " omg:isDerivedFromGeometry \"TriangleMesh with 12 points and 20 triangles.\" ;\n", " v4d:analysisTimestamp \"2022-03-13T13:55:30\" ;\n", " v4d:observableBIMNodes \"[rdflib.term.URIRef('file:///20946a35-1493-11ed-a3e0-c8f75043ce59'), rdflib.term.URIRef('file:///282_SC_f2_Rectangular_20_20_902338_0WczkhEJb5j9vKUsZ2C8Xb'), rdflib.term.URIRef('file:///282_SC_f2_Rectangular_50_20_1128324_3fzMBiyqn35x9PKxUuI9k5'), rdflib.term.URIRef('file:///282_SC_h2_Circular_Hollow_Sections_CHS219x8_874044_2VkCuCs_XE6Oa0y_VskRw_'), rdflib.term.URIRef('file:///282_SF_f2_Rectangular_20_45_883681_3vj_SCnYn1ygZxCAXgDJ8E'), rdflib.term.URIRef('file:///282_SF_f2_Rectangular_20_50_882150_1uRDEANfn5uQudsbYskAIQ'), rdflib.term.URIRef('file:///282_SF_f2_Rectangular_precast__20_20_910622_0xd_OlqWn3CPWz5_iJaRR3'), rdflib.term.URIRef('file:///282_SF_h2_H-Wide_Flange_HEM180_1087611_3X7b5jdTP3qPcQ8PFZIQyv'), rdflib.term.URIRef('file:///282_SF_h2_UPN_UPN240_1204348_3UjGj1LDDF4OdGVnMEh_PL'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1118860_0KysUSO6T3_gOJKtAiUE7d'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_150mm_1119623_2KGJL8gr1CSxNi9E5OsTC5'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_871840_0xEj5E_xb0xuG9m0PNp3LQ'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_875067_0tYm_oWnH4EO9KOnrQ_LTZ'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_909296_1_1LnVDAG8H2GhtSGFUjv0cw'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_915343_0igX5ELYf27gUEXdl0c9BO'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_957051_1r0ua9H6vBcgWG64YK_7sP'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Ff1_Glued_brickwork_sandlime_214mm_957053_1r0ua9H6vBcgWG64YK_7sV'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Fg2_Masonry_perforated_brick_420mm_890813_1_1viIg84R51EQ3AC_ORnWPI'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_Fg2_Masonry_perforated_brick_420mm_890813_35DaG1pibDM8EXj9_uGbw5'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_150mm_871551_27Y0jzhqDDngyHLzsbzFWM'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_1094351_3dwB2NAe1Bwg5iNk81I6l1'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871479_14ggU2wNT39gT0cJEPcQ2T'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871524_1MQAV8CnbF1gfS2oQu3BTB'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871539_1naLsFzZjExgYlxSPIk5Fv'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871546_27Y0jzhqDDngyHLzsbzFWJ'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871605_36EK3dgtj5kvzLoe__DpK_'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871610_36EK3dgtj5kvzLoe__DpKn'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871615_36EK3dgtj5kvzLoe__DpKq'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871640_3m98g9juf6duIoC__K0IiP'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_871749_24_a_Hzkf0MQ_ZwECgKMG1'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_872964_21RVJrNGr989BN7TXOhOb6'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_872969_21RVJrNGr989BN7TXOhObB'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_873082_1naLsFzZjExgYlxSPIk59_'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_200mm_892869_3_XZi7pMP9Ng_MI42c_pXP'), rdflib.term.URIRef('file:///Basic_Wall_211_WA_f2_Concrete_interior_250mm_881587_1i_PelBQv4sR9_JJI0Ie0o'), rdflib.term.URIRef('file:///Floor_232_FL_Compression_slab_150_CIP__200mm__957651_2IS4Dw5in8hOx8w270ibl_'), rdflib.term.URIRef('file:///Floor_232_FL_Wide_slab_50mm_1012024_37fvQW5Ab3jRe12QYYQFCn'), rdflib.term.URIRef('file:///Precast_Stair_Stair_1194239_Landing_1_0zVTcSmQj60w7eOLIJ1eQZ'), rdflib.term.URIRef('file:///Precast_Stair_Stair_1194239_Run_2_0zVTcSmQj60w7eOLIJ1eQX')]\" .\n", "\n", "\n" ] } ], "source": [ "analysisNode1=SessionNode(subject=week1.subject,\n", " observableBIMNodes=subjects,\n", " isDerivedFromGeometry=week1.resource,\n", " analysisTimestamp=week1.timestamp)\n", "analysisNode1.to_graph()\n", "print(analysisNode1.graph.serialize())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These analyses nodes can be stored in seperate graphs and combined at later stages to be used in future analyses." ] } ], "metadata": { "interpreter": { "hash": "801b4083378541fd050d6c91abf6ec053c863905e8162e031d57b83e7cdb3051" }, "kernelspec": { "display_name": "Python 3.8.13 ('conda_environment3')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "832bf5fd5c6660b37dd2a90a45a57b02f877bb0a297fe89ca9c261a7f9e32997" } } }, "nbformat": 4, "nbformat_minor": 2 }